

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

OF SCIENCE HID TECHNOLOGY

FACULTY OF NATURAL RESOURCES AND SPATIAL SCIENCES

DEPARTMENT OF GEO-SPATIAL SCIENCES AND TECHNOLOGY

QUALIFICATIONS:						
BACHELOR OF GEOINFORMATION TECHNOLOGY; BACHELOR OF LAND ADMINISTRATION						
QUALIFICATIONS CODES:	QUALIFICATIONS LEVEL:					
07GITB	6 - 07GITB					
07BLAD	6 - 07BLAD					
COURSE NAME: GEOINFORMATION MANAGEMENT	COURSE CODE: GMN621S					
DATE: JANUARY 2019	SESSION: 2 nd					
DURATION: 3 HOURS	MARKS: 100					

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION

EXAMINERS: Mr. Lameck Mwewa & Mr. Sebastian Mukumbira

MODERATOR: Prof. Thomas Christiansen

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Excluding this front page)

INSTRUCTIONS

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.

PERMISSIBLE MATERIALS

- 1. Calculator
- 2. Ruler
- 3. Pencil
- 4. Eraser

Question 1

1.1 Define the following terms:

1.1.1 Data (1)

1.1.2 Information (1)

1.1.3 Geoinformation (1)

[3]

Question 2

2.1 When one has to introduce a technological innovation to an organization, there are some potential problems that one has to anticipate. List four of these potential problems.

(4)

[4]

Question 3

3.1 Geographic information Systems can be implemented at varying levels, namely, Departmental Level, Enterprise Level and Community/Federated Level, hence the terms Departmental Systems, Enterprise Systems and Community/Federated Systems.

With the help of a table, compare and contrast Departmental Systems and Enterprise Systems.

(6) [**6**]

Question 4

4.1 There are several planning and management tools available for GIS planning. These include a Gantt Chart. For this tool (Gantt Chart) do the following

4.1.1 Explain its principle and its advantages briefly (3)

4.1.2 Compile a sketch figure that illustrates schematically how the tool looks like. (4)

4.1.3 Indicate (at least) three components (of your choice) that are typical characteristics of the tool.

(3) [10]

Question 5

5.1 Understanding the strategic needs of an organization often needs frequent interviews, discussions and observations. Give any 4 guiding questions that you may ask management and rank and file employees during an interview.

(4)

[4]

Question 6

6.1

- 6.1.1 What do the two abbreviations "WMS" and "WFS" stand for? (2)
- 6.1.2 Explain briefly the important difference between the two. (5)
- 6.1.3 What is your understanding of the term Spatial Data Infrastructure (SDI)? (2)
- 6.1.4 Briefly discuss any three components of an SDI. (6)

[15]

Question 7

7.1 An Information Product Description has several components including the title and the name of the department requiring the Information Product. List and describe four more components of an IPD.

(8)

[8]

Question 8

8.1 Data design requires the consideration of various aspects of the data. Name at least four of these aspects.

(4) [4]

(2)

(3)

Question 9

9.1

- 9.1.1 Task 1: Assuming the road is 8.4 cm long on a map 1 : 50,000. How long is that road section in nature? (in km!)
- 9.1.2 Task 2: Assuming a farm is 11.2 km x 5.6 km. On a map it is 6 cm x 3 cm. What is the scale of the map to the nearest 100 000?
- 9.1.3 Task 3: Ohamakari farm on the outskirts of Okakarara covers a rectangular area

of 8,000 ha. How big (in cm2) would the farm be on a map 1:100,000?

(4) [9]

Question 10

10.1 When referring to remote sensing data the term 'resolution' may refer to four different types of resolution. Name and briefly explain four of these types of resolution. [One mark for each resolution type mentioned. Three marks for each explanation of the resolution type.]

(12) [12]

Question 11

11.1 If we assume that a map polygon should have a minimum size of 5×5 mm, what is the minimum area (in ha) which can be displayed on a map with a scale of 1:25,000? (4)

[4]

Question 12

12.1 Which approximate map scale would you need to make sure that your area measurement error for a minimum area of 1000 ha remains below +/- 8%? (2)

Map scale for given area and tolerance										
Minimum Area	% error in area measurement									
Hectares (ha)	1%	3%	5%	8%	10%					
0.01	95	286	476	762	952					
0.1	301	904	1506	2409	3012					
1	652	2857	4762	7619	9524					
10	3012	9035	15058	24094	30117					
100	9524	28571	47619	76190	95238					
1000	30117	90351	150585	240935	301169					
1 hectare (ha) = 10 ($000m^2 = 2$	2.471 acre	es							

[2]

Question 13

13.1 Distinguish between thick client and thin client in client-server architecture. Use some real-life examples to illustrate your answer.(6)

Question 14

14.1 Define the following terms in reference to Cost-Benefit analysis:

14.1.1 Base year

(2)

14.1.2 Break-even

(2)

Year	2016	2017	2018	2019	2020	2012	2022
Total Costs (N\$)	250000	255000	245000	230000	227000	228000	228000
Cumulative Costs							
Total Benefits (N\$)	0	0	140000	180000	360000	420000	680000
Cumulative				***************************************			
Benefits							

14.1.3 Assuming a discount rate of 5%, calculate the following:

a) Cumulative costs for the period 2017 to 2023.

(3)

b) Cumulative benefits for the same period.

- (3)
- c) The cumulative benefits to cumulative costs ratio discounting.
- (3) [**13**]